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Abstr8ct-An exact analytical soJuti.'n within the linear framework is developed for the transient
dynamic impact response of a two-end simply supported cylindrical shell of tinite length. The
solution obtain~-d is shown to consist of a remarkably simple analytical expression, Several examples
of impact loadings are calcul'll<:d. The results show excellent agreement with those of the computer
code ABAQUS.
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I. INTRODUCTION

In recent years. concern has been expressed regarding the dynamic response analysis
ofstructures sustaining impact loading. Cylindrical shells. as a type ofimportant engineering
structure. have been extensively investigated. In retrospect. some analytical solutions of the
transient dynamic response ofcylinders were obtained in the 60s and early 70s (H umphreys
and Winter. 1965: Pawlik and Reismann. 1973). Since then. due to the rapid develop
ment of numerical techniques it seems that little progress has been achieved in the ana
lytical solution of this problem. Although numerical techniques are efficient and can be
used to solve various complex dynamic response problems of structures. they need large
computing power and the computer running time may be such as to make it unacceptable
for small capacity computers. Hence. it is desirable to obtain efficient and simple exact
solutions for these kinds of impact response problems.

In problems of transient dynamic response of thin-walled cylindrical shells. three
approximate shell theories have been commonly used (Reismann and Pawlik. 1968): (a)
membrane theory: (b) combined membrane and bending theory and (c) improved theory
(including shear deformation and rotation inertia). The analysis is limited to the solution
of partial differential equations with only two independent variables: the angular coordinate
pand time I. For the membrane theory. the circumferential stress is assumed to be constant
throughout the thickness of the shell and therefore bending moments vanish. Travelling
W.lVe solutions for membrane stresses were presented in some published papers (Payton.
1961: Forrest'll and Alzheimer. 1969).

The combined membrane .lIld bending shell theory (Fliigge. 1962) uses the KirchhotT
hypothesis and allows for variation of the curcumferential stress throughout the thickness
of the shell. resulting in bending moments as well as membrane forces. A solution for both
membrane and bending stresses based on this theory was presented by Humphreys and
Winter (1965). In the improved theory. straight-line elements originally normal to the
median surf~tce arc allowed to rotate. and a new parameter is introduced to account for the
efTect of transverse shear deformation. The improved theory. which is the best of the
aforementioned three. accounts for membrane forces. bending moments. transverse shear
deformation and the el1ccts of rotatory inertia (Herrm'lI1n and Mirsky. 1957: Goodier and
Mcivor. 1962. 1964). It can be reduced to the combined membrane and bending theory if
rotatory inertia and transverse shear deformation ctfeets arc neglected.

All these two-dimensional thin cylindrical shell theories arc approximate. Although
they have the advantage of simplicity. they suITer from one major disadvantage: they ignore
the surl~tce traction on the two ends of the shell so that they cannot be applied to shells of
tinite length.

In this paper. an exact amtlytic.1I solution is presented for the transient dynamic
response of a thin-walled. clastic. cylindrical shell of finite length under transverse impact
loading. The solution of partial difTerential equations. based on the Kirchhofr hypothesis.
contains three independent variabks: the axi.1I coordinate x. the circumferential coordinate
II and time T. The general solutions for displacements and membrane and bending stresses
are presented in closed form as a double trigonometric series. Two cases of impulsive
loading are calculated. In the first example. the loading is assumed to be a rectangular
impulse distributed over half the shell circumference along the shell length. In addition. the
transient dynamic response of a cylindrical shell subjected to lateral. localized. distributed
impact loading is considered in the last example. Comparison of the present results with
the results of Humphreys and Winter (1965) and the computer code ABAQUS (Hibbitt el

al.• 1988) show excellent agreement.

:!. OUTLINE OF METHOD OF ANALYSIS

Consider a thin-walled circular cylindrical shell of finite length made of an isotropic.
linearly elastic material. It is simply supported along the edges x = 0 and x = I. and
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subjected to transverse impulsive loading. The shell is referred to as a right-hand system of
orthogonal. curvilinear coordinates x. P and = which represent the axial coordinate.
circumferential coordinate and the coordinate perpendicular to the middle surface of the
shell (Fig. I). respectively. To simplify later derivations. we first introduce the following
dimensionless variables

U' I"

u=Ii.' r=Ii.'

h' (l-vz)R , cl I ~
II = Ii.' p = Eh' p. f = Ii. = R..jP<I~ (1)

where the prime (') denotes the actual variable, By adding the inertia terms. the dimen
sionless forms of the governing equations (Timoshenko and Woinosky-Krieger. 1959. pp,
522-523) are

(2)

(3)

(4)

when:

and the dots denote differentiation with respect to time r.
We assume that the two ends of the cylindrical shell arc simply-supported. so the

corresponding boundary conditions and initial conditions can be written .IS follows;

(1',11'. N ,•M,)I,.o = O. (Ii. 1\ li')I{~o = 0

(I'.II',N 1.M 1)1,., = 0, (11,1"11')1,.0 =0.

Fig. I. Geometry of a cylindrical shell associated with Cartesian coordinates.

(5)
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The boundary conditions suggest the use of the Fourier transform. So, we define

2R f'R
<P I (m, p. t) = T Jo u(x. p. t) cos A.,.,x dx

2R f'R . .
<p~(m. P. t) = T Jo L'(x, p. t) 510 l·mX dx

2R fiR
<p J(m. p, t) = T Jo w(x. p. t) sin ;'mx dx

(6)

where

• nlTtR
I'm = -,-.

then
'YJ

II(X, p. t) = L c/J I (m, p. t) cos A.mX
m-O

lI(x.II. r) = L (p ~(m.II. t) sin ;.",x
"..,1

"
lI'(x.II, t) = L cP,(m.ll. t) sin A.",X

"' .... 1

p(x.II, t) = L (1)~(m,ll. r) sin ).",x.
",-1

With further expansion of the coellkients of the above series with respect to II. let

2 inU(f1. m, t) = - (p I (m,II. t) cos nfJ dll
It 0

2 inV(n.m,t) = - c/J~(m,ll.t)sinnlldIJ
It 0

2 inwen. m, t) = _. c/J ](m,ll, t) cos np dlI
It 0

., i"P(n, m. t) = :- c/J4(m, p, t) cos nIl d/I.
It 0

(7)

(8)

Finally, the three displacement components tI. I" II' and distributed load p. can be expressed
in double trigonometric series form. respectively

"1J 'L

lI(x.ll, t) = LL U(n, m, t) cos ;'mx cos nIl
,"_0,..0

'(. '"'-'
/'(x.ll.t) = L L V(f1,m,t)sin;.",xsinnfJ

Itt ... I n_O

·x.; -"'I,

Ir(x, fl, t) = L L Wen. m. t) sin ;.",x cos nfl
I" .... In"" 0

~ ~

p(x.ll. t) = L L pen. m. t) sin ;.",x cos IIfl·
m= I n=U

(9)
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One can thus prove that eqn (9) satisfies the boundary conditions (S).
Substituting eqn (9) into the dimensionless governing eqn (4), we get

Here. the boldfaced letters denote the matrices

489

(10)

(

011 a!~

A = a21 an

031 a)~

where the elements of matrix A are

all = -A.';'-Hl-v)n~; a12 = ~(I+v)n).",; On = -vA.",

0ZI=012; aZ2=-nz-HI-v»).';'; oZ)=n

t hZ (.. ., •z Z 14)
On = - -12 n +..A.",n + J'.", •

(II)

The general solution (see the Appendix) of eqn (10) is given by

(12)

where h, (i = I. 9) and kj (j = 1.2,3) are given in the Appendix. In addition, for axisym.
metric conditions when n = O. cqn (IO) can be reduced to the following form

(13)

By means of the laplace inverse integral transform. we obtain

rt ,'A.", [Sin (Xz(t-s) sin (X1(t-S)]
Vn=Jo -,r ---~;--- -"-~-;I-- pes) ds

where

(14)
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Finally. the displacements are obtained in terms of the series defined in eqns (9). Therefore.
the generalized forces. i.e. the membrane forces and the bending moments. can easily be
obtained from the associated force-<iisplacement relations

[
CU (Ct. )]N1=D. -+v --wox c{J

N 2 = D 1 [(OV -w )+v OU]
c{J ox

where

Eh' Eh'J
D 1 = l-v2' D 2 = 12(I-v2)

(15)

(16)

.Ire the membrane stiffness and bending stiffness of the shell. respectively. The stresses in
the shell at the outer and inner surfaces can be obtained by substituting eqn (15) into

(17)

yielding

(18)

3. EXAMPLES

3.1. Example A
Consider the case when the shell sustains a rectangular pressure impulse of duration

II distributed as shown in Fig. 2. The analytical expression of the loading is

{
p~ cos P.

p'(x.P.I) =
O.

7t 7t
o~ I ~ I .. -"2 ~ P~ "2' 0 ~ x ~ I;

otherwise.
( 19)
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:'L;
~

Fig. 1. Impact loading as a function of time and position (Example AI.

Defining a dimensionless impulse per unit area

where

i"1= p;, dt = p;,t l •
n

et l (l-v~)R ,
fl = 7f' Pn = Ell' PI)·

and the wave speed

J;
-~-

E(' = ~---_._- ',~~~ .
II( I - \'-)

Then. the dimensionless transformed form of loading is

in which

!
i

cos/I.
p(x.lI. r) = f.

O.

7t 7t
- 2 ~ II ~ 2 . 0 ~ x ~ I. () ~ f ~ f I ;

1t
11/1 > i' f > f ..

(20)

I. ,~

cos /1 = L L a"(',,, cos "II sin i.",x
11"""11 Itt,., I

where the Fourier series coellicients are given by

an =
1t

I
al = i

a" = {o-. ~~~~~I:' /I =2.4 .
" = 3.5 .

{

-~_. • m = I. 3....
em = 01tl."

m = 2.4.....

Now. combining eqn (12) and eqn (14) and integrating. we can obtain the displacement
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response results. For t ::E; t I'

S. M. LI er al.

For r ~ r (. the response is given by

laucm \';.", [ • . ,
Uu =---0--- (S~ I cos 7; r +S~~ Sill 'X;r) - (SII cos 'X Ir +SI; SII1 'X I r))

1/ !true", [ .' '" .' ( "' • C' co' Jf'" II = Q (I,,;, - 'Xj)(.) II COS 'X I r + 51; sin 'X I r) - I.,;, - oc!) (.): I cos IX;r +.);; slI1lX;r)

+hn(J.11 cos k)r+J,,! sin kJt)]

W = Tuncm [h 7(J'1 cos k,r+J,! sin k1t)+bH{J!1 cos k!t+J!! sin k 2r)

(21 )

where

l
SI = CO~IX( !L:---!.

I IX;! I

sin OCI !,S, = -,"- (j = 1.2)
/. IX

I
- t I

Now we can define

1
J = ~o~k, t I - I

II k/! 1

sin k,t,
J , = ',-" (i = I. 2. 3) .
I. k;r,

(23)
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then. the stress responses. after the impact has vanished. i.e. for t > t I (the region of most
interest for short pulses). are

(I - It "') [(" '·S S')- +2""';' 1.,;,-CXj)( Ilcos'X(r+ 12 Stn 'Xlt

., t. I
+ -:' L .- [IHb,.b~.b7.I)(JI' cosk1t+Jp sin kit)

11: ", ~ I. .\.". 111 -

+If (h 2• h s•bx• I) +(J~I cos k 2t +J22 sin k 2t)

(24)

(25)

Considering the limiting conditions in which the impulse remains constant while its duration
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of action approaches zero. eqn (24) and eqn (25) become

af = 4, f _1_ {_\'i.,;,(sin~:r _ sin:x\r)
n- ... -1.3... mQ :x~:x\

(26)

_± _ 4 ~ I { ~.~ (Sin:x~, Sin~,r)
(1~ - 2 t... ---- -v J-.", ---~ ---

n ", _ u.. mQ 1: : ex I

't sin klr].. .' ..+j ~ (h I. h,.. h." I) k, .... cos Ilsln ".",,~

(27)

3.2. Examplt- B
In this example. the impulsive lo"lding is suddenly applied inward over a small area

x, ~ x ~ x~ in the axial direction. and -Ilu ~ /1 ~ Ilu in the circumferential direction of thc
outcr surface of the shell. The load is assumcd to be constant within the time duration
o~ (~ (I and vanish when ( > (, (Fig, 3). which cun be expressed as

{
p;..

p'(x.IJ.I) = O.
O~t~tl' x\ ~x~x~. -llo~/l~flo;

otherwise.
(28)

Using the samc convention as in Example A. the dimcnsionless transformed form ofloading
is

{
pu.

p(x. fl. ,) = O.
XI ~ X ~ x~. -flo ~ fl ~ flo. 0 ~ r ~ ,,;

otherwise.
(29)
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l-,
p P

Po,........ Po,
I I
I I

,
I I I
I I I

0 1(1 1(2 I I( -Po Po 13
Fig. 3. Impact loading as a function of time and position (Example B).

where

1 r: x

Po =- L L O~Cm cos np sin A.mx.
fl".Om_.

The coefficients for the double Fourier series expansion for p(x. P. t) are given by

Po
00=

tr.,
a~ = ..:... sin npo (n = 1.2.3....).

ntr

4 . .t I +X 2 • X 2 - X I
em = mtrSIn -2/mtrsln-2-/-mtr (m = 1.2.3.... ).
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Then. following the same procedures described in Example A. the stress responses when
O:S:;t~tlare

H ~ ~ sinnPIl. (X I+"2) . (X2-XI)+ -,- t- t- -- sin 21 mtr Sin -.,-/- mtr
trOt, ~-'.2 .... m-I.2.... ",n -

(30)

(31)
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For t ~ t I' the stress responses are

S. M. LJ et aI.

_+ 4fJo ~ I. (XI +x,) (x, -XI) { ,O'r = 1t~ m _ f:.L mQ sm -u=- m1t sin ---=-u-- mn - VA.,;,[(S~l cos ~2t

+ S~~ sin ]2t) - (5 11 COS]1 t+S 12 sin Xlt)]

- (\' +~ ;.~) [( ;.,~ - :% i )(5 I I COS] I t +S I 2 sin ); It)

~ sinnpo. (X 1+X2) . (X2-XI)
I... ~- san -- nm san --- mn

",~ 1.2.... mn 2/ 2/

x [If= (h,.h ot • h7.n)(J11 cos k lt+J l2 sin kIt)

+ff(h2.h~.hK.nHJ21 cos k 2t+J22 sin k 2t)

+f r (hI. hf,. h'l' n) (J J I cos kJt +JJ'!. sin k )t)] cos np sin ).,,,x.

-t 4(ln I"" I. (XI +x2) . (X~-Xl) { "0'2 = --,. . .~~ sm ~-'-' nm SIO -_._-- m1t - V' A.' (S, cos ],t
n' ",_ 1.2..\, .. mQ 2/ 21 m ,I ,

+S22 sinx2t) - (SII cos ~I t+S12 sin], t»

-(I =+= ~ \.),;,) [0-.;, -ail U;'II COS] .t+ Sl2 sin] I t)

(32)

8 I

+ · Ln- ,,~ 1.1..

x [If (hi' h~. b7 • II)(J II cos kit +J 12 sin kit)

+If(b 2. h s•hx•n)(J11 cos k 2t+Jn sin k z!)

+f f (h3.hI.. h'l.II) (JJI cos k .It + J 31 sin k 3r) I cos nIl sin ;'",X.

where S,j' (i. j = I. 2) anu J'i' (i = I. 2. j = t. 2. 3) are same as for eqn (22).

(33)

4. DISCUSSION

By systematically changing parameters. the axial stress O'f and the circumferential
stress O'f for all given values can be computed. The terms of the double series have been
summed to n = 100. m = 101 for time t ~ 4n at position x = 0.5, P= 0 for the parameter
values 1= 2.5. 10.20 and" = 0.01.0.05 and impact duration f l ::; O. Figures 4-5 show
the results of the calculations.

The effect of the length is illustrated in Figs 4a-4d for the case of a thin-walled cylinder
of Ir ::; 0,0 I. subjected to a pure impulse of very short duration (t I = 0). The stresses have
been calculated at the mid-span (x = 0.5. (l = 0). For a long shell. with / = 20, there is
good agreement between the present results and those of Humphreys and Winter (1965).
obtained assuming that there was no variation in the state of stress with axial position. This
condition corresponds to tTl = O. As the cylinder becomes shorter. the overall stress-time
response changes and small wavelcngth oscillations arc superimposed on to the lower
frequency variation. The effect is particularly pronounced for the axial stresses and is
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4

S9R5

1 2

Fig. 6. S9RS shell element of ABAQUS.

ascribed to the stress wave reflections at the ends. Ignoring the end effects. a short shell
(/ = 2) would grossly underestimate the values of the stress. since axial stresses ranging
between -I and + I become predominant over hoop stresses ranging from -0.75 to +0.5
(Humphreys and Winter. 1965).

The effect of thickness is illustrated in Fig. 5. There are obvious bending effects in the
stress-time history. the thicker the shell. the higher the amplitudes of stresses.

Example B has been calculated for a cylindrical shell with a thickness ratio of 0.01 and
length-to-radius ratio of 5. The load was applied over a rectangular pad defined by x I =0.4.
X2 = 0.6 and Po = 15° (see Fig. 3). For comparison. the problem was also solved using
ABAQUS. employing 240[10 x 24] S9R5 shell elements. as plotted in Fig. 6. The deformed
shape is shown in Fig. 7. Figures 8 and 9 show the variation of dimensionless stresses with
position. The terms of the double trigonometric series have been summed to n = 100 and
ttl = 100. There is excellent agreement between ABAQUS and the present solution.

The double trigonometric series finds its merit to treat boundary condition problems.
despite that it is not monotonically convergent. The convergence ofthc double trigonometric
series employed was studied by taking up to 5000 x 5000 terms. It was found th.lt each
result oscillated about a mean value .Illd that the amplitude of oscill.ltion decreased with
the number of terms in the series but depended on the position of stress that was being
c.llculated. and on the type of loading. In .Iddition. the axi.11 stress always oscillates more
seriously than the circumferenti:11 stress because of the traction on the two ends. Typically.
in the second problem at the center of loading where x = 0.5 and {J = O. taking between
30 x 30 and 60 x 60 terms gave an amplitude of oscillation of ±3.5% above the average for
the axial stress and ±2.1 % for the circumferential stress: taking between 100 x 100 and
120 x 120 terms reduced the amplitude to ±0.25% for the axial stress and ±0.15% for the
circumferential stress. In either case. the dilTerence between the average results was less
than 2%. The solution of the second example was obtained with 100 x 100 terms which
requires 70 min CPU on a Micro-VAX II computer. against more than 5 hours CPU for
the ABAQUS run. If only the response of a tixed position at a tixed time is needed. the
CPU involved is only of the order of tens of seconds.

S. CONCLUSIONS

The exact solution of the elastic transient response of a cylindrical shell subject to a
transverse impact loading has been obtained in closed form. The treatment is valid for a

Fig. 7. Mesh of one-quarler of the model in Example B.
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cylinder of any length. with simply supported ends and is therefore an improvement over
other published theoretical solutions. which are only valid for infinitely long cylinders. The
effect of the proximity of the ends is particularly important in building up high axial stress
that may result in failure. In both the examples that have been treated. very high bending
stresses have been obtained. The results have been shown to be in excellent agreement with
ABAQUS.
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API'ENDIX

We lIl:lkc usc of lhc Laphu.:e lransfurm tcchnil\lIe tu solvc the simultaneuus differential ellns (10) hy delining

O(s) = r- e "U(II.m. t) dt
j"

~'(.V) = fL e'''V(n.m.t)dt
j"

W(.I·) = f' e·"W(II.m,t)dt
j"

Jl(.v) = f' e'''P(n.nr.t)dt.
j"

(34)

Then the dilferential el\uatiun can b.: tmnsfurmed into a linear algebraic system of simultaneous equations. when
n~1

where E is an order three unit mal rill. The algebraic s"lutions of cl\n (35) arc

. (h' h. h.)"If = 6 ../6 = -'--k' + '--k' + -'--k' r(.f),.v·+-j r+'; s'+-j

where

(35)

(36)

(37)
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We can see that it will be convenient to obtain the inverse Laplace transform by ellpressing &I./~ &v/& and &.../&
in the form containing b.t(sz+kD. b:J(sz +ki) and b l /(S2+ki>. etc. If we denote II as the relevant value of the
determinant. then a series of coefficients appearing in eqn (36) are listed below

0
,

0al~ all a,,-$" a'l
&t'= 0 a~~-s~ Q:J

&,. =
a~1 0 Q:)

-PIs) OJ: QH-S:: all -PIs) Qn- S2

Oll-S:: °1: 0

&... = Q!I a~z-s: 0

a.11 °.1 :
-PIs)

and k,~ (i = 1.2.3) are obtained by cubic root formulae [from eqn (37»)

k• 9, ., l!:
i=T+-",rcoslJ

. 9, Jf: ( 2)ki = T +2",rcos 0+ j7t

, 9, Jf: ( 4)k; = T +2",rcos 0+ j7t .

where

r =J - (/:IW; IJ = ~ COS-I ( - t,)
I =!g g,-~gl-gl'I,=g,_lg:, 3' I.. 27" . '. .• j"

.q, = -(u" +u::+a,,)

nle cllCmcients h. (i .. 1.2•...• 9) .m: oht'lined hy finding the solution of linear algehraic eqU<ltions of the
l11anipul;llions of the pulynomi"ls in eqn (36). hence we have

b, = &.1&" (i = 1.2•...• 9).

where

k;+k; UII

kiki "I :tJ!,-tl I1U'!2

o
&, = kik; U: .•

k~ki til Ja~l-tllla:u

o
&, = u" ki+k;

t/.;J:: .• -tl"lIu kfk~

&" = kl+k; k;+k; k;+q
klk; k;k; k;q

0

&: = kl+k; a"
klk; tll~U"!] -III jll!!

0

&.= ":1 k;+k;
a, JU!1 -alltJ~j k;ki

ki+k~

kiq

k;+q
k;k~

&l = k~+k;

k~k;

ki+ki
k;ki

o

k;+ki
k;ki

&... q+k;
klk;

o
k;+k; all

k;k; a'lu:,-a,,(I:l

&, = -(u,,+u::) k;+k;
kiki

k;+k~

kiki

&. = ki +k; - (u" +a::l
klki U,,(I::-U,:U:I

k;+q
k;q

1

&. = ki+k;
kik;

ki+ki -(u,,+u::)
kfk~ "IIQ:::-U'#2I

So. inverting eqn (36). the general solution can he ellpre5.'iCd as eqn (12).


